Champion Animals

 

What is it about animal record-breakers that makes them so cool?  I’m always getting asked about the most dangerous snake or the fastest flying bird and to be honest, some of the most exciting adventures I’ve had over the last ten years, travelling the world filming wild animals, have been when I’ve been on the tail (I mean trail) of a record breaking beast. 

People who achieve something outstanding always attract our attention.  But even exceptional human athletes don’t come close to the feats that some animals are capable of.  On September 14th 2002, Tim Montgommery, sprinted 100 metres in 9.78 seconds (averaging 22.87mph) to take the world record.  A sprinting cheetah, running over rough terrain, can cover the same distance in 4.09 seconds (60mph).  If that doesn’t make you gasp, how about this, a cheetah can accelerate from standing still to flat-out faster than a Ferrari (cheetah, 0 – 60mph in under 3 seconds :  Enzo Ferrari, 0 – 62 mph in 3.65 seconds). 

Why can’t the fastest human run as fast as a cheetah, carry trees like an elephant or dive as deep as a whale?  The simple answer is that we’re just not built for it, and I think that’s why these super-specialist animals fascinate us.  Primates like you, me, and our close relatives: the monkeys and apes, are remarkably similar in design.  We all have forward facing, distance judging, eyes, a five fingered hand, suitable for a variety of tasks and large brains that allow us to adapt our behaviour and cope with new situations quickly.  Although we are adapted physically for survival, but we’re more adapted mentally.  Humans are, of course, champions themselves: we can solve problems better and faster than any other animal thanks to our huge brains.  This has made us the most powerful creature on Earth, and the only animal that can sit down and read SciTec (instead of eating it or using it to wipe our bottoms’).

Studying record-braking animals is more than just the biologists’ version of train-spotting.  By looking in detail at the survival strategies of such animals, scientists have been able to advance our understanding in many areas of biology.  An awful lot of what we think we know about the process of evolution, about anatomy (the way animals are built) and physiology (how they work) has been learnt from this kind of work.  This is, however, just the tip of the iceberg, we’re beginning to realise that there’s a great deal more to be learnt.  A whole new area of study, biomimetics, has been attracting a lot of interest over recent years.  Why?  It’s a branch of biology devoted to understanding and, if possible, copying the best-kept secrets of the animal kingdom.

So, what are the champions to keep your eye on?  How do you spot an animal that could teach us a useful trick?  Here’s my hot selection of the ones to watch…

Champion Sniffer

The world’s best nose isn’t actually a “nose” at all, it’s an antennae.  Specifically, it is the antennae of the male lesser emperor moth.  These guys can track down the attractant perfume of a suitable female at a distance of 6.7 miles.  Amazingly, the female carries less than 0.10mg of the scent and only releases a few molecules at a time to tempt the males.  Thanks to their champion antennae, which are covered by 40,000 scent detector cells, the males manage to home in on potential mates with ease.  In one experiment, a caged female attracted 127 males from up to 2 miles away in just 3 hours.  The mechanism that guides the males is beautifully simple.  When the nerve cells of an antennae fire they stimulate the moth’s flight muscles directly, making it automatically turn in the direction of the scent.  When male is tracking down a female he follows a distinctive zig-zag path as a result.  A number of research groups around the world are trying to tap in to the secret of moth antennae as they can detect chemicals at as low a concentration as 1 molecule in an air sample.  This is far better than any palm-sized machine humans can currently make.  Other researchers are trying to understand the pheremones (scents) that the moths and other insects use.  If they master how these chemicals work they could attract or repel all kinds of insects with ease.

Toughest Skull

A bang on the head can cause your brain to knock against the inside of your skull, bruising it and causing temporary or permanent damage.   Amazingly, some animals regularly practise the kind of head-banging that would knock a human unconscious or even kill them.  Male mouflon, an impressive species of sheep found in Sardinia and Corsica show-off to the local females by head butting each other repeatedly, leaping in the air for aerial crunches and diving off rocks at each other.  Deer, particularly, in the UK, red deer stags are also champion head bangers, however their strong antlers lock together long before they get to bang skulls. 

Studies of the exact composition and structure of skulls of head bangers like these have revealed super, strong honeycombed, bone structures.  Far from being “bone heads”, it has been discovered that the strength has more to do with structure of the bone rather than it’s thickness.  Researching how the bones are constructed is hopefully going to lead to new designs for safety helmets, load-bearing structures, novel light-weight materials and even artificial bone.

One animal definitely worth a closer look is the gannet.  For my money it deserves the prize for champion head-banger.  Bird bones have to be incredibly light, or the bird wouldn’t be able to fly.  The gannet has a skull that is no heavier than birds of comparable size and yet it does something rather special.  It dives, head-first, into the sea, at speeds of around 60 mph.  At that speed, the water surface presents a lot of resistance.  Their brains, however, escape scrambling, thanks to an incredibly aerodynamic head that scythes through the water combined by a skull full of air pockets that cushions their brain and dissipates the impact shock-waves.

Strongest Mussel

Shouldn’t that be muscle?  Well no, because mussels, a humble shellfish, have a muscle that is unique and it makes them a world champion.  Before you do anything else, put down the magazine and tense your arm muscles, really squeeze them.  Pulling against each other, they get tired quickly and soon start to ache.  When they a kept tensed, muscles fatigue quickly.  Your heart may beat all your life without stopping or missing a beat, but it tenses and relaxes at least once a second.  Only one muscle, in one animal, the mussel stays tensed without tiring.  It’s called the Byssus retractor muscle and it’s the muscle that the mussel uses to grip onto its Byssus, the threads that it glues onto the rocks or other substrate when it settles as a baby.  From the point it settles to the point it dies.

If that wasn’t enough, researchers are also pretty fascinated in what’s going on at the other end of the Byssus threads.  The mussel makes these threads, and then glues them to rock, concrete, steel, plastic, etc. with a biological glue that sets, hard, under water, and stays stuck for years.  The commercial applications for an underwater, instantly setting cement like that would be massive, if only we could crack the formula.

Strongest Animal

Forget about elephants and blue whales, think a little smaller.  The world’s strongest animal (when you take it’s weight into account) is the rhinoceros beetle.  Okay, so they can’t pull trees out of the ground, but, in tests, they’ve carried 30 times their own body weight for periods in excess of half an hour, without it affecting their normal walking speed of 1cm per second (0.02mph).  In one experiment the beetles demonstrated that they could still walk along (albeit slightly slower) whilst carrying 100 times they own body weight.  Most amazingly, whilst they were doing this, their oxygen intake didn’t increase as dramatically as it should.  It appears at first glance that the beetle is somehow breaking some fundamental laws of physics.  This is unlikely, but there’s definitely something very unusual going on.  Because the nervous systems of insects and their six legged body designs are already used as models to guide the construction of robots, understanding how such a small animal manages to carry so much is of immense interest.  Just imagine if we could construct small, six legged robots capable of carrying 100 times their own weight.  Some Bionics experts aren’t bothering to copy the insect design, instead, they’re using little insect sized backpacks of electronics that can tamper with the nerves of the animal.  That’s right ladies and gentlemen, it is my pleasure to introduce the radio-controlled cockroach (really, it’s been done).

Champion Chompers

No matter how scary the teeth of a tiger or a tyrannosaur appear at first glance, they really are nothing compared to the teeth of the brazilian leaf-cutting ant.  For their size and weight, these are some of the toughest teeth in the world, thanks to the way zinc is built into the structure of the cutting edge.  Impressed?  Well how about parrotfish.  They have teeth that are incredibly resistant to crushing and shattering.   It’s a good job too, they eat coral (including the rock part).   The strength of their teeth is due to the way they incorporate tiny mineral fibres millionths of a millimetre in diameter. 

Another amazing rock cruncher that is well worth a mention is the piddock.  It drills holes in tough mud and rocks even though it, like all snails, doesn’t have any teeth at all.  Their secret is a shell that incorporates a tough ceramic.  It literally wears away the mud, rock or whatever it wants to drill in to.

In our constant quest for new, ever stronger materials for use in constructing everything from artificial body parts to miniature machine parts, the ability to copy structures like these and synthesise them in the laboratory is a goal many are pursuing.

Fastest Swimmer

Recently, human swimmers have started taking lessons from the animal champions and streamlining their bodies with the aid of special swimsuits that encase them completely and reduce turbulence.  Thanks to these technical inventions, we have seen a whole load of world records broken over the last couple of years.  The world’s fastest swimmer over 100 metres is Peter van den Hoogenband.  He can swim at 4.68 mph.  Impressive, but not as impressive as the gentoo penguin, the fastest swimming bird at 22.37 mph (only a bit slower than Mr Montgommery’s 100m land sprint record).  Thanks to their streamlined bodies and powerful wings they are super fast escapers.   A leatherback turtle can power away from trouble at a pretty impressive 22mph as well – making it the world’s fastest reptile (unless you count Iguanas when they throw themselves out of trees).

Whales and dolphins have a streamlined shape, incredibly soft, almost spongy outer layers of skin and often have ribs and indentations that, help them reduce turbulence. Their skin and body shape, is currently being used as the inspiration for a new generation of streamlined boat hull designs.  Some of  those super swimming costumes I mentioned earlier also have a ribbed design which mimics the body shape of some of the faster whales (Killer and Sei whales can sprint at around 35mph).

The champions of underwater speed are however, the fish.  Blue Finned-Tuna have been clocked at 45 mph, Swordfish at 57mph and the champion, is the amazing sailfish at 68mph.   Incredible.  I don’t give the top speed prize to the sailfish because that is a sprinting speed.  I think Tuna deserve to win because they swim at top speed, in shoals, for long distances.  They get extra power from their muscles by heating them up, a beautifully efficient fish.  The race is currently on to design a submarine with the energy efficiency and manoeuvrability of a tuna.  They are, however, a tough act to follow.

Fastest Running Animal:

You think I’m going to say cheetah don’t you?  Well, yes and no.  The cheetah is, without a doubt, the fastest land animal.  They have a whole load of adaptations to help them achieve this, however, there a two key ones.  Firstly they have long legs and a spine so flexible that they can both stretch their front and back legs apart whilst bounding and then, on landing, place their back legs further forward than their front ones.  This gives them a stride length of around 7m, similar to that of a racehorse.  Unlike a racehorse however, they manage 3.5 strides a second (compared to 2.25 for a champion horse).  Secondly, they don’t worry about breathing when they’re running.

When an animal’s muscles need to work incredibly hard there can often be a problem supplying the muscle cells with the oxygen they need to break down glucose to provide a source of energy.  To get round this, the cells switch to anaerobic (literally, without air) respiration.  This allows the muscles to function, but only for a limited time as the cells produce lactic acid as a waste product when they do this.  When human athletes train, they are doing two things: whist exercising their hearts / lungs so that their bodies become good at taking in and distributing oxygen they also train themselves to tolerate the pain that they feel when the lactic acid starts to build up in their muscles (hence the macho exercise cliché “no pain, no gain).  If you don’t know what I’m talking about, you need to put down this magazine and run up and down the stairs twenty times.  Done it?  Legs hurting? Good. 

When a sprinter like Tim Montgommery or a cheetah takes off, they don’t even bother breathing, there’s no point.  They push themselves to the limit, beyond the ability of their hearts and lungs to cope and then recover afterwards.  Tim couldn’t run at his record-breaking 22.87mph for much longer than 100m and the cheetah goes hungry if it doesn’t catch it’s dinner in around 200m. 

Khalid Khannouchi is the current holder of the world record for running a marathon (26 miles and 385 yards).  He set his record during the 2002 London Marathon, crossing the finishing line after 2 hours and 5 minutes.  This gives him an average speed of 13.95 mph.  Not as impressive as Tim at first glance but hold on, over 26 miles?  That’s amazing.  To keep your muscles going for such a long time you’ve got to have a completely different strategy, based on working only as hard as your lungs and heart can cope with.  There is one animal that does this incredibly well, and it actually gets my nomination as the fastest animal.  It can reach peak speeds close to that of the cheetah but has been clocked running at speeds around 40 miles an hour for 4 miles without a rest.  This animal, from North America, is the Pronghorn Antelope.

Fastest Flier

I know almost every book in the world says that the peregrine falcon is the fasted flying bird but I disagree.  The speeds you see quoted for peregrine falcons are based on recordings and estimates of the bird’s average speed in a “stoop” this is when it’s closing in on prey, or in other words, falling from the sky.  Okay, what they do is clever and worth taking about so here goes.  Peregrines are like air-to-air missiles.  They have incredibly good eyesight and cruise around at high altitude looking for seagulls, ducks and their favourite food, pigeons to fly underneath them.  When they spot one (pretty impressive eyesight) they fold up their wings and plummet towards it at speeds of around 80-90 mph.  They don’t just fall, they fold their wings in such a way that they can steer and stay aerodynamic – like a magic arrow.  A fraction of a second before they hit their prey, they swing out their feet so that after they have stunned (or quite often killed) their target with the force of their impact, they can grab and hold it.  If this doesn’t sound impressive enough, bear in mind that a pigeon in flight is not a stationary target, they can fly at 60 or more miles per hour themselves.  The fastest bird in the world is actually the Spine Tailed Swift, recorded at 106 mph (really) whilst flying. 

Copying bird wing design is perhaps the oldest example of biomimetics and goes back to Leanardo Da Vinci (or Daedilus if you believe your Greek myths).  Some bird inspired innovations can be seen on every single passenger plane in service.  For example, if you ever sit near the wing on a plane journey, look out of the window as the plane comes into land.  You’ll see flaps coming up to create great holes in the wing.  These are mimicking the action of the alula, a flap birds have on their wings that forces them to stall when required.  This is how birds and planes both manage to control the exact point they drop out of the sky and land. 

Our attempts to learn from birds continue to this day, with varying degrees of success, and the very latest planes and guided missiles incorporate all kinds of bird tricks.   Unfortunately, some of the recent bird-inspired designs have resulted in aircraft that are so difficult to fly, humans can’t do it unaided.  Such planes are so unstable that they have to be “flown by wire”: the pilot tells the plane what she wants it to do, the onboard computer works out how to do it and then the plane does it.  That’s the idea anyway, there have been some very expensive failures and a number of, initially attractive, design concepts have been abandoned after years of effort and billions of pounds/dollars wasted. 

It just goes to show, we can’t always beat the animal champions with our brain-power alone.  Sometimes we just have to admit that they’re the best and let them get on with it.

 

Back to Howie's Science Week page
This article first appeared in Scitec magazine (2003).